Asymptotics of Weil-Petersson geodesics II: bounded geometry and unbounded entropy
نویسندگان
چکیده
We use ending laminations for Weil-Petersson geodesics to establish that bounded geometry is equivalent to bounded combinatorics for WeilPetersson geodesic segments, rays, and lines. Further, a more general notion of non-annular bounded combinatorics, which allows arbitrarily large Dehn-twisting, corresponds to an equivalent condition for Weil-Petersson geodesics. As an application, we show the Weil-Petersson geodesic flow has compact invariant subsets with arbitrarily large topological entropy.
منابع مشابه
Coarse and synthetic Weil-Petersson geometry: quasi-flats, geodesics, and relative hyperbolicity
We analyze the coarse geometry of the Weil-Petersson metric on Teichmüller space, focusing on applications to its synthetic geometry (in particular the behavior of geodesics). We settle the question of the strong relative hyperbolicity of the Weil-Petersson metric via consideration of its coarse quasi-isometric model, the pants graph. We show that in dimension 3 the pants graph is strongly rela...
متن کاملAsymptotics of Weil-Petersson geodesics I: ending laminations, recurrence, and flows
We define an ending lamination for a Weil-Petersson geodesic ray. Despite the lack of a natural visual boundary for the Weil-Petersson metric [Br2], these ending laminations provide an effective boundary theory that encodes much of its asymptotic CAT(0) geometry. In particular, we prove an ending lamination theorem (Theorem 1.1) for the full-measure set of rays that recur to the thick part, and...
متن کامل. G T ] 1 3 N ov 2 00 8 Asymptotics of Weil - Petersson geodesics I : ending laminations , recurrence , and flows
We define an ending lamination for a Weil-Petersson geodesic ray. Despite the lack of a natural visual boundary for the Weil-Petersson metric [Br2], these ending laminations provide an effective boundary theory that encodes much of its asymptotic CAT(0) geometry. In particular, we prove an ending lamination theorem (Theorem 1.1) for the full-measure set of rays that recur to the thick part, and...
متن کاملar X iv : 0 81 2 . 29 41 v 1 [ m at h . G T ] 1 5 D ec 2 00 8 ENTROPY VS VOLUME FOR PSEUDO - ANOSOV MAPS
We will discuss theoretical and experimental results concerning comparison of entropy of pseudo-Anosov maps and volume of their mapping tori. Recent study of Weil-Petersson geometry of the Teichmüller space tells us that they admit linear inequalities for both sides under some bounded geometry condition. We construct a family of pseudo-Anosov maps which violates one side of inequalities under u...
متن کاملClassification of Weil-petersson Isometries
This paper contains two main results. The first is the existence of an equivariant Weil-Petersson geodesic in Teichmüller space for any choice of pseudo-Anosov mapping class. As a consequence one obtains a classification of the elements of the mapping class group as WeilPetersson isometries which is parallel to the Thurston classification. The second result concerns the asymptotic behavior of t...
متن کامل